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• Expectation-Maximization (EM) is an algorithm for estimating parameters in 

certain probability models such as mixture models. 
 

• In composite mixture models, each component is not a just single distribution 

(e.g., a Gaussian), but rather a product of multiple distributions that could be 

continuous or categorical, e.g.: Gaussian × Poisson × Multinomial 
 

• However, EM only finds a local maximum, and it’s performance can be very sensitive 

to how model parameters are initialized before the algorithm is actually run. 
 

• In composite mixture models, there can be many local maxima, and a poor 

parameter initialization can severely hamper performance. 
 

Can we design an algorithm to achieve a favorable initialization  

of composite mixture model parameters prior to running EM? 

 

 

Introduction and Problem Statement Results 
• Constructed a benchmark dataset with 

known underlying model parameters in  

order to compare the performance of  

different EM initialization methods. 
 

• Each composite data point comes from 

one of 5 mixture components, each of 

which is a product of a Poisson, Von 

Mises, Multinomial, Exponential, and 2 

Gaussian distributions. 

 

 

 

 

 

 

 

 

 

Application: Process and User Classification 

• Using our parameter 

initialization method as part  

of a tool called “EMFUDD++” 

for training composite mixture 

models of processes, users, 

and network hosts. 
 

• Analyzed data collected from 

host- and network-based 

sensors (volunteer lab  

users only; opt-in policy). 
 

• Simulated imposters by 

evaluating data from other 

processes on a model trained 

for one process (same for 

users/hosts). 
 

• Combination of host- and 

network-based sensors 

generally achieves better 

performance than host-based 

sensors alone. 

Actual type 

Browser 
Non-

Browser 

Predicted 

type 

Browser 98.0% 9.3% 

Non-

Browser 
2.0% 90.7% 
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Methods 
• We adapted the K-means++ method from the  

clustering literature. In clustering, the goal is  

to group data points into different classes: 
 

• K-means is a simple clustering algorithm that is used in many  

applications, but doesn’t always achieve the desired clustering: 
 

• K-means++ is an extension that initializes cluster centers more  

intelligently, by probabilistically choosing them to be far apart: 

 

K-means++ requires the ability to compute distances between data points –  

but how do we compute distances between composite data points? E.g.: 
 

Point 1: (‘192.168.1.7’ , 80, ‘TCP’, 1244) 

Point 2: (’34.25.126.93’, 80, ‘UDP’, 5103) 

Point 3: (‘192.168.1.7’, 4431, ‘UDP’, 120) 
 

Main Idea of Our Solution: 

1. Represent each composite data point with a composite probability distribution 

whose mean is that data point. 

2. Compute KL divergences between these distributions as a proxy measure of the 

“distance” between the data points they represent. 

Our K-means++ style initialization outperforms other 

methods. Arbitrarily high performance can be 

achieved by running EM from multiple initializations. 

 

Users are mostly distinguishable when using only host-

based sensors, but classification performance improves with 

the addition of network-based sensors measuring the 

number and byte sizes of packets being sent (e.g., User 2). 

Host-based sensors only 
Host- and network-

based sensors 

Browsers (Firefox, IE) 

are distinguishable 

from non-browser 

processes based on 

protocol, number and 

sizes of packets, and 

dest. port. 

Examples: 


